

Mark Scheme (Results)

January 2020

Pearson Edexcel International Advanced Level in Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020 Publications Code WST01_01_2001_MS* All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number	Scheme	Marks
1.	[Sum of probs = 1 gives] $a+b+c+0.3=1$ (o.e.)	M1
	[F(1) = 0.63 gives] $0.15 + a + b = 0.63$ or $0.63 + c + 0.15 = 1$ (o.e.)	M1
	Solving $c = 0.22$	A1
	[Use of $E(X) = 1$ or symmetry gives] $a = c$ $a = 0.22$	M1
	Therefore $b = \underline{0.26}$	A1
		[5]
	Notes	
	Each of the 3 Ms can be awarded at any point for either the correct equation	on seen or
	clearly implied by its use e.g. choosing their b ($0 \le b \le 0.7$) so that $a + b + c$	$= 0.7 (1^{st} M1)$
	1^{st} M1 for use of sum of probabilities to form an equation in <i>a</i> , <i>b</i> and <i>c</i> .	
	Can allow the use of their value for c in the equation <u>or</u> implied by its	use to find b
	2^{nd} M1 for equation in a and b from using F(1) = 0.63 e.g. $a + b = 0.48$ or $c + b = 0.48$	
	1^{st} A1 for deducing $c = 0.22$	
	3^{rd} M1 for using $E(X) = 1$ to deduce $a = c$ ft their <u>value</u> of c (provided $0 \le a$	≤ 0.35)
	NB E(X) = 1 gives $-a + b + 3c = 0.7$ but only scores M1 when they st or give their value of a ($0 \le a \le 0.35$) = their value of c	
	2^{nd} A1 for $b = 0.26$	
	All 3 correct answers only (no working) scores 5 marks (they may be seen	in the table)
	If answers seen in the table contradict answers with working in the body of	,
	script takes preference.	

Question Number	Scheme	Marks
2. (a)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	B1 B1 B1 B1
(b)	Since no family has a dog and a rabbit a mutually exclusive pair is <u>D, R</u>	(4) B1 (1)
(c)	$\left[\frac{2+"4"}{40}\right] = \frac{3}{20}$	B1ft (1)
(d)	e.g. $P(D \cap C) = \frac{2}{40} = \frac{1}{20}$ $P(D) = \frac{12}{40} = \frac{3}{10}$ $P(C) = \frac{14}{40} = \frac{7}{20}$ <u>or</u>	M1
	$\frac{1}{20} \neq \frac{3}{10} \times \frac{7}{20} = \left[\frac{21}{200}\right]$ so they are <u>not</u> independent	A1
	$P(C) = \frac{14}{40} = \frac{7}{20} \text{ vs } P(C D) = \frac{2}{12} = \frac{1}{6} \text{ or } P(D) = \frac{12}{40} = \frac{3}{10} \text{ vs } P(D C) = \frac{2}{14} = \frac{1}{7}$	(2)
(e)	e.g. $[P(R C) =] \frac{P(R \cap C)}{P(C)}$ or $\frac{"\frac{4}{40}"}{\frac{14}{40}}$	M1
	$=\frac{4}{14} = \frac{2}{\underline{7}}$	A1ft
(f)	$\frac{"10"+"7"}{"10"+"7"+9}$ (o.e.) $;=\frac{17}{\underline{26}}$ (accept 0.6538461)	(2) M1; A1 (2)
	Notes	[12]
(a)	1 st B1 for 3 intersecting circles with $n(D \cap R) = 0$ (either diagram)[Blank is r 2 nd B1 for a box and 9 outside the circles Allow pro	ot equiv'to 0] babilities (out lecimals or
(b)	B1 for <i>D</i> and <i>R</i> with a suitable reason (extra pairs is B0) e.g. $P(D \cap R) = 0$ Condone \emptyset for 0 or no intersection/overlap. Must see an attempt at a reason. Must be <i>D</i> , <i>R</i> not $P(D)$, $P(R) = P(D \cup R) = P(D) + P(R)$ is not a suitable reason though.	
	For (c) onwards if their $N \neq 40$ allow denominators of probs with 40 or N	
(c)	B1ft ft their "4" (but must give a proper fraction) ft blank as $0 \text{ or } \frac{3}{20}$ or exact equivalent	
(d)	 M1 for stating <u>all</u> the probabilities (values) required for a suitable test, must be labelled. Must use <i>D</i> and <i>C</i> ft their VD. Must be clear which test they are trying to use. A1 for the correct probabilities <u>and</u> correct calculation or comparison <u>and</u> correct conclusion 	
(e)	M1 for a correct ratio of probabilities (ft their 4): either as an expression or values A1ft for $\frac{2}{7}$ or exact equivalent (allow ft of their 4 [\neq 0] provided it gives an exact fraction)	
(f)	M1 for a correct ratio (possibly of probabilities) ft their 10 and their 7 [Not exp A1 for $\frac{17}{26}$ or exact equivalent (e.g. 0.654 will score M1A0)	pression here]

Question Number	Scheme	Marks
3. (a)	$S_{mp} = 32958 - \frac{1124 \times 281}{10}$ [= 1373.6] (*)	B1cso
	$[r =] \frac{1373.6}{\sqrt{6046.4 \times 382.9}} = 0.9027 \text{awrt } \underline{0.903}$	(1) M1 A1
(c)	In scatter diagram points are close to a line <u>or</u> r is close to (or near to) 1 It is consistent with the manager's belief	(2) B1 (1)
(d)	$\frac{\sum m}{\sum p} = \frac{1124}{281} (\text{o.e})$	M1
	So $k = \underline{4}$	A1 (2)
(e)	$b = \frac{1373.6}{6046.4} [= 0.22717]$	M1
	$a = 28.1 - "0.2271" \times 112.4$ [= 2.5653]	M1
	p = 2.565 + 0.2271m $p = 2.57 + 0.227m$	A1; A1
(f)	$[2.565+0.2271\times70 =]$ 18.467 accept answers in range [18, 18.6]	(4) B1 (1)
(g)	Manager's model (when $m = 70$) estimates $p = 17.5$ So use manager's model since wants the lower estimate. (o.e.)	B1ft dB1
		(2) [13]
	Notes	
(a)	B1cso for a correct expression seen (need all 4 numbers seen)	
(b)	M1 for a correct expression or an answer only of 0.90 (2sf) or 0.902 (truncation A1 for awrt 0.903	on)
(c)	B1 for "points close to a line" <u>or</u> " <i>r</i> is close to 1" <u>or</u> "strong correlation" (o.e.) <u>but</u> "near <u>er</u> to	
	and "consistent with manager" or " consistent with belief" (o.e.) or "yes"	
(d)	M1 for a correct calculation or equation in k A1 for $k = 4$ NB using the point (140, 35) is M0A0 despite giving $k = 4$	
(e)	1^{st} M1for a correct expression for b 2^{nd} M1for a correct equation in a (ft their value of b or even letter b in correct formula) 1^{st} A1for $b = awrt 0.227$ in an equation in p and m or allow y and x Allow a transciption error (e.g. 0.277 etc) if 0.227 is seen in earlier working. 2^{nd} A1for $a = awrt 2.57$ in an equation in p and m only	
(g)	1^{st} B1ftfor 17.5 or $70 \div k$ for their value of k 2^{nd} dB1(dep on 1^{st} B1) for therefore choosing manager's model because it has estimate. (o.e.) (Must be true for their values)	the lower

Question Number	Scheme	Marks
4. (a)	Width = $\underline{0.5}$ (cm)	B1
	1 cm^2 rep's 4 babies or 0.25 cm^2 rep's 1 baby or their $h \times w = 3.5$ or area = 3.5 cm^2	M1
	Height = $\frac{14}{16} \times 4 \div 0.5 = \underline{7}$ (cm)	Al
		(3)
(b)	Lower Quartile = $[2.5] + \frac{\frac{98}{4} - 16}{24} \times 0.5 = [2.5] + \frac{8.5}{24} \times 0.5$	M1
	= 2.50 + 0.177 = awrt <u>2.68</u>	A1 (2)
(c)	$Q_2 - Q_1 = 3.14 - 2.68 = 0.46 > 0.41 = 3.55 - 3.14 = Q_3 - Q_2$	M1
	So <u>negative</u> skew	A1
		(2)
(d)	$\overline{w} = \frac{311.5}{98} = 3.17857 = \text{awrt } \underline{3.18}$	B1
	$\sigma_w = \sqrt{\frac{1051.125}{98} - \overline{w}^2} = \sqrt{0.622448}$; = 0.78895 = awrt 0.789	M1
	$v_w = \sqrt{-98} = w = \sqrt{0.022440}, = 0.78895 = awit 0.789$	A1
	$3("3\ 18"-3\ 14)$	(3)
(e)	$\frac{3("3.18"-3.14)}{"0.789"} = 0.152 \text{awrt } \underline{0.15}$	M1A1
(f)(i)	49 th value now 3.25 [or median in group $3.25 \le w < 3.50$] so median increases	(2) B1
(ii)	more higher values or Σfx increases so mean increases	B1
		(2)
	Notes	[14]
(a)	B1 0.5 only	
	M1 may be implied by correct height	
	A1 correct height of 7(cm)	
(b)	M1 for any correct equation leading to correct fraction as part of $m = \dots$ or $(m - [2.1])$	5]) =
	Ignore incorrect end point and watch out for "working down" Using 25 for 24.5	
	A1 awrt 2.68 allow exact fraction e.g. $\frac{257}{96}$ (allow 8.75 for 8.5 [or $\frac{515}{192}$] if $n + 1$ used	l)
(c)	M1 for use of $Q_2 - Q_1$ and $Q_3 - Q_2$ (o.e.) ft their Q_1 [or correct inequality and -ve skew]	
	<u>or</u> a correct quartile inequality and statement that negative skew	L
	A1 for correctly concluding negative skew from their values. Their ft calc should b	e correct.
(d)	B1 for awrt 3.18 (allow $\frac{89}{28}$)	
	M1 for a correct expression (including square root) ft their mean ($\frac{\sqrt{122}}{14}$ scores M1)	
	A1 for awrt 0.789 (accept $s = 0.79301 = awrt 0.793$)	
(e)	M1 for correct substitution (ft their values and condone missing 3) A1 for awrt 0.15	
(f)(i)	1 st B1 for median increases with a suitable reason to support this (must mention the	3.25)
(ii)	2^{nd} B1 for mean increases with a suitable reason to support this (Recalc of $\overline{x} = 3.196$	

Question Number	Scheme	Marks
5. (a)	$P(X < 7) = P\left(Z < \frac{7-10}{6}\right) = P(Z < -0.5)$	M1
	= 1 - 0.6915; $= 0.308537$ awrt <u>0.309</u>	M1; A1 (3)
(b)	$\frac{10+k-10}{6} = 0.8416$ $k = 5.0496$ awrt <u>5.05</u>	M1 B1
	k = 5.0496 awrt <u>5.05</u>	A1 (3)
(c)	Area of rectangle is $X(X-3)$ Need $X(X-3) > 40$	M1 M1
	Need $X(X-3) > 40$ $X^2 - 3X - 40 > 0 \implies (X-8)(X+5) > 0$	M1
	So critical values are $8 \text{ and } -5$	Al
	Need $P(X>8) + P(X<-5)$ or $1 - P(-5 < X < 8)$	M1
	So $P(Z > -0.33) + P(Z < -2.5)$	M1
	= 0.6293 + 0.0062	dM1
	$= 0.6355 \ [0.6355 \sim 0.637]$	A1 (9)
		(8) [14]
	Notes	
(a)	1^{st} M1 for standardising 7 (or 13) with 10 and 6 (allow \pm) 2^{nd} M1 for $1 - p$ (where $0.68)A1 for awrt 0.309 (calc. 0.3085375) (Ans only scores 3/3)$	
(b)	M1 Standardising 10 $\pm k$ with 10 and 6 and setting equal to z value $0.8 < z <$	< 0.9
	B1 for $z = \pm 0.8416$ or better (calc gives 0.8416212) <u>used</u> in a linear equation	on for <i>k</i>
	A1 $k = 5.05$ or better (or use of $z = 0.84$ and answer of 5.04)	
Ans only Ans only	awrt 5.04 scores M1B0A1 Answer in the range 5.049 ~ 5.0499 scores M1B1A1 but answer only of 5.05 is N	M1B0A1
(c)	1 st M1 for a suitable expression for the area of the rectangle (in x or X) [\Rightarrow by 2 nd or 3 rd M1 2 nd M1 for a correct quadratic inequality (accept $x(x-3) > 40$ [o.e.]) 3 rd M1 for an attempt to solve their 3TQ to find critical values (allow = 0) (e.g. factorise)	
	Allow $(X+8)(X-5)$ or use of formula with ≤ 1 sign error or $(X-\frac{3}{2})^2 - k$	-40 (k > 0)
	 1st A1 for the correct critical values (cvs) of 8 and -5 4th M1 for solving their quadratic inequality - taking the "outside" region (ft thei [P() not required] 	r cvs)
	5 th M1 for standardising at least one of their values (with 10 and 6) correctly (f 6 th dM1 for an attempt at both probabilities: one ≈ 0.006 and one > 0.6 and add or for $1 - q$ where $q = 0.36$ or better	
	This mark is dependent on all the other 5 M marks being scored 2 nd A1 for answer in range [0.6355, 0.637] with clear attempt at both probabilitie (calc 0.636768)	es used
Ans only	If 6 th M1 is not explicitly seen then must have an answer awrt 0.636 or 0.637	

Qu No.	Scheme	Marks
6. (a)	[Sum of probs = 1 gives] $k \left[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} \right] \{=1\} \text{ or } \frac{147k}{60} = 1$	M1
	$k = \frac{20}{\underline{49}}$	A1 cso
(b)	$E(S) = \frac{1}{147} \left(60 \times \frac{1}{2} + 120 \times \frac{1}{3} + 180 \times \frac{1}{4} + 240 \times \frac{1}{5} + 300 \times \frac{1}{6} \right) \underline{\text{or}} 3.55k$	(2) M1A1
	$=\frac{71}{\underline{49}}$	A1 (3)
(c)	Expected profit = $260P(S=5) - 10$ <u>or</u> $-10 \times P(S \neq 5) + 250 \times P(S=5)$	(3) M1M1
	$= \left[260 \times \frac{10}{147} - 10 \right] = 7.68707 = \text{awrt} (\$) \underline{7.69}$	A1
(d)	p^2 because Roger must win 1 st and 2 nd round (accept "wins 2 rounds")	(3) B1
	(1-p) because Roger loses in 3 rd round match	B1 (2)
(e)	$ \begin{array}{ c c c c c c c c c } \hline [r] & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline [P(R=r)] & 1-p & p(1-p) & [p^2(1-p)] & p^3(1-p) & p^4(1-p) & p^5 \end{array} $	B1 M1A1
(f)	E (profit) = $260 \times p^5 - 10$	(3) M1 A1
	$\begin{bmatrix} E(\text{profit}) \ge 7.69 \end{bmatrix} \implies p^5 \ge \frac{17.69}{260} \text{ so } p \ge 0.58418$	M1; A1
	260	(4)
	Notes	[17]
(a)	M1 for clear attempt to find sum of probs. (Condone $\frac{147k}{60} = 1$)	
Verify	Alcso for the correct answer with M1 clearly scored and no incorrect working seen. Need to see all 6 probs added and = 1 for M1 and a comment (e.g. therefore $k =$) for A1	
(b)	M1 for an attempt at $E(S)$ – at least 4 correct products (allow use of k or $k = 0.408$ or 1	
	In a for an attempt at $E(3)$ – at least 4 correct products (allow use of k or $k = 0.408$ or better) 1^{st} A1 for a fully correct expression (allow 3.55k) 2^{nd} A1 for $\frac{71}{49}$ (accept 1.45 or better [calc:1.44897]) (Ans only 3/3)	
(c)	$1^{\text{st}} \text{ M1 for } 260 \times P(S=5) \text{ or } 250 \times P(S=5)$ $2^{\text{nd}} \text{ M1 for } N \times P(S=5) - 10 \text{ or } N \times P(S=5) - 10 \times P(S \neq 5) (N \in \mathbb{N})$ Probabilities can be in terms of k or ft their values A1 for awrt (\$)7.69 Probabilities can be in terms of k or ft their values	
(d)	1^{st} B1 for an explanation of the p^2 term (e.g. use of tree diagram)WWL alone scores 1^{st} B1 but 2^{nd} B1 for an explanation that must lose the 3^{rd} round matchWWL and $pp(1-p)$ will get B1B1	
(e)	B1 for correct set of values for <i>R</i> (in a table or a list) M1 for at least 3 correct values [apart from $P(R = 2)$] for <i>R</i> and correct probabilities A1 for a fully correct probability distribution	
(f)	1 st M1 for 260×P($R = 5$) (ft their P($R = 5$) implied by 2 nd M1 1 st A1 for 260× $p^5 - 10$ or $p^5 \ge \frac{10}{147}$	
	2^{nd} M1 for forming a correct ft of $P(R = 5) \ge P(S = 5)$ (accept > or allow =) [ft their 2^{nd} A1 for awrt 0.58 or 0.59 [If equals sign is used we need to see awrt 0.59 for the A	·(c)] .1]
ALT	$260p^5 - 10 \ge 260 \times \frac{10}{147} - 10 \text{ (M1A1)} \Rightarrow p^5 \ge \frac{10}{147} \text{ (M1) etc (A1)}$	-

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom